After 25 years of observations, an international team of astronomers has seen the first evidence of ultra-low-frequency gravitational waves.

The waves are expected to come from pairs of supermassive black holes found in the centres of merging galaxies and the discovery could hold answers about the formation and evolution of the Universe and the galaxies that populate it, including our own Milky Way.

The finding stems from observations made over the last 25 years using six of the world’s most sensitive radio telescopes, including the Lovell Telescope at The University of Manchester’s Jodrell Bank Observatory, and is presented by a team of researchers from the European Pulsar Timing Array (EPTA), in collaboration with Indian and Japanese colleagues of the Indian Pulsar Timing Array (InPTA).

The results are published today in the journal Astronomy and Astrophysics.

Dr Michael Keith, Lecturer at Jodrell Bank Centre for Astrophysics at the University of Manchester, said: “The results presented today mark the beginning of a new journey into the Universe to unveil some of its unsolved mysteries.

“We are incredibly excited that after decades of work by hundreds of astronomers and physicists around the world, we are finally seeing the signature of gravitational waves from the distant Universe.”

Gravitational waves are ripples in space that can be produced by two objects orbiting each other. But they are extremely weak and hard to detect.

The observation of gravitational waves produced by orbiting pairs of supermassive black holes, which are hundreds of millions of times the mass of our sun, will allow us to learn about the evolution of galaxies and the origin of the enigmatic black holes located in their centres.

LEAVE A REPLY

Please enter your comment!
Please enter your name here